(5x+50)+(25x^2)=250^2

Simple and best practice solution for (5x+50)+(25x^2)=250^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+50)+(25x^2)=250^2 equation:



(5x+50)+(25x^2)=250^2
We move all terms to the left:
(5x+50)+(25x^2)-(250^2)=0
determiningTheFunctionDomain 25x^2+(5x+50)-250^2=0
We add all the numbers together, and all the variables
25x^2+(5x+50)-62500=0
We get rid of parentheses
25x^2+5x+50-62500=0
We add all the numbers together, and all the variables
25x^2+5x-62450=0
a = 25; b = 5; c = -62450;
Δ = b2-4ac
Δ = 52-4·25·(-62450)
Δ = 6245025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6245025}=\sqrt{25*249801}=\sqrt{25}*\sqrt{249801}=5\sqrt{249801}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{249801}}{2*25}=\frac{-5-5\sqrt{249801}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{249801}}{2*25}=\frac{-5+5\sqrt{249801}}{50} $

See similar equations:

| 7x+63=10x–3 | | (5x+50)+(25x^2)-62500=0 | | 3x+3=-4x+17 | | 1/3a+1/5a=14/15 | | (x-2)/(x-3)+15/(x*2-3x)=6/(x-3)-3/2 | | 4x+7=31-x | | 9-x3=0 | | 3(14-a)=9 | | 15x-24=18x | | 5^2x+1=12x | | 3(x2+3)=x=1 | | 5xxx=270 | | 12=o+5 | | 2(x+1)=2-x+3x | | 3x-6/4=0 | | x/2-x+1/4=1 | | (2x-1)(3x+4)=7(2-x) | | 2/3(x-1)=1,5 | | 2x+6+x=3(x-2) | | 5-3(2-3x)=-3-x | | -3x=-5x+2 | | x10=2/3 | | 7+1x=180 | | x5=15/8 | | Y=-20x+45 | | x(x-5)/(2x+3=0 | | 3y^-1/2-1=0 | | 7x–4–8x=207x–8x=20+ | | x+9/2x-10=0 | | 4x+8=10x-3 | | 5(x-2)+(x-3)=2(2x+1) | | X-0’15x=30 |

Equations solver categories